Tunable Magnetization Dynamics in Interfacially Modified Ni81Fe19/Pt Bilayer Thin Film Microstructures

نویسندگان

  • Arnab Ganguly
  • Sinan Azzawi
  • Susmita Saha
  • J. A. King
  • R. M. Rowan-Robinson
  • A. T. Hindmarch
  • Jaivardhan Sinha
  • Del Atkinson
  • Anjan Barman
چکیده

Interface modification for control of ultrafast magnetic properties using low-dose focused ion beam irradiation is demonstrated for bilayers of two technologically important materials: Ni81Fe19 and Pt. Magnetization dynamics were studied using an all-optical time-resolved magneto-optical Kerr microscopy method. Magnetization relaxation, precession, damping and the spatial coherence of magnetization dynamics were studied. Magnetization precession was fitted with a single-mode damped sinusoid to extract the Gilbert damping parameter. A systematic study of the damping parameter and frequency as a function of irradiation dose varying from 0 to 3.3 pC/μm(2) shows a complex dependence upon ion beam dose. This is interpreted in terms of both intrinsic effects and extrinsic two-magnon scattering effects resulting from the expansion of the interfacial region and the creation of a compositionally graded alloy. The results suggest a new direction for the control of precessional magnetization dynamics, and open the opportunity to optimize high-speed magnetic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic properties of Ni81Fe19/W90Ti10 multilayers

The magnetization and anisotropy of Ni81Fe19/W90Ti10 multilayers prepared by DC sputtering are presented. At high-angle X-ray diffraction, weak superlattice peaks appear around the NiFe (1 1 1) diffraction line, which indicate a fiber texture /1 1 1S for NiFe. The magnetization decreases with NiFe layer thickness tNiFe and the analysis of the results at 300K indicates the presence of 6 ( A thic...

متن کامل

Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration

The stabilities of Pt/Ti bilayer metallizations in an oxidizing atmosphere have been investigated with several thicknesses of interfacial Ti-bonding layers. Reactions in the Pt/Ti/SiO2/Si interface were examined as a function of various annealing conditions in the temperature range 200-800°C by using Rutherford backscattering spectrometry, Auger electron spectroscopy, x-ray diffraction, and tra...

متن کامل

Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-ass...

متن کامل

Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...

متن کامل

Multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 layers for tunable applications

The dielectric properties and tunability of multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 (PZT/BZN) layers (PPBLs) fabricated by pulsed laser deposition on Pt/TiO2/SiO2/Si substrate have been investigated. Dielectric measurements indicate that the PZT/BZN bilayer thin films exhibit medium dielectric constant of about 490, low loss tangent of 0.017, and superior tun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015